
Supplementary Material for SpacePHARER: Sensitive identification of
phages from CRISPR spacers in prokaryotic hosts

Zhang R.,1 Mirdita M.,1 Levy Karin E.,1 Norroy C.,1 Galiez C.,1, 2 and Söding J.1, 3

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
2Univ. Grenoble Alpes, CNRS, Grenoble INP/Institute of Engineering Univ. Grenoble Alpes, Grenoble, France

3Campus-Institut Data Science (CIDAS), Göttingen.

I. ALGORITHM DESCRIPTION

The query spacer set Q has Nq translated ORFs q of
CRISPR spacers (Q = {q1, ...qNq}) from one prokary-
otic genome. Phage proteome target set T has Nt phage
protein sequences t (T = {t1, ...tNt}). These protein se-
quences are extracted in the input preprocessing step
(Step 0) of the algorithm from each spacer set and
each phage genome by scanning them in six transla-
tional frames. We refer to similarity between q and t
as hit, and similarity between Q and T as match. The
SpacePHARER algorithm relies on a statistic for the
combination of hits between a spacer sequence set and
a phage protein sequence set. The idea is that combin-
ing together several sub-significant hits (due to weak ho-
mologies or the typical length of spacers) can be highly
informative and result in a significant match. Steps 2
and 3 of the algorithm test if the pairwise P-values of the
best hit of sequences in the query set with those in the
target set are due to homologous relationships or entirely
due to chance.

A. (1) MMseqs2 protein-level search

The SpacePHARER algorithm first searches all q’s
against all t’s using the fast, sensitive MMseqs2 protein-
level search [10], with VTML40 substitution matrix [8],
gap open cost of 16, gap extension cost of 2, and a short,
spaced k-mer pattern for the prefilter stage (10111011)
with six informative (“1”) positions. Spaced k-mers are
utilized in MMseqs2 to reduce the correlation between
k-mers at neighboring positions, and to achieve better
sensitivity and speed. The spaced k-mer pattern is cho-
sen such that it is short in length in order to produce
consecutive double k-mer matches (which are demanded
by MMseqs2) within spacer fragments of 10-12 aa, and
that the number of maximum overlapping informative
positions is minimized.

Perfect or near-perfect hits (with no or 1-2 mismatches
on the nucleotide level) are shown to be very reliable sig-
nals in predicting phage-host relationship and improve
the taxonomic certainty of the prediction, even if there
is only a single hit between a phage-host pair [4]. How-
ever, those hits are not well reflected in the pairwise P-
value of the protein-level search. Therefore, all q− t hits
reported from the sensitive protein-level search will be
aligned again on the nucleotide level with match reward

of 1, mismatch penalty of 1, gap open cost of 10 and gap
extension cost of 2. The protein-level search will compute
a protein pairwise P-value (pprot) for each hit and nu-
cleotide alignment a nucleotide pairwise P-value (pnucl).
In order to prioritize near-perfect hits on the nucleotide
level to gain precision without losing much sensitivity,
we compute the pairwise P-value as

exp (min {(0.5 log pprot + 0.5 log pnucl) , log pnucl}) (1)

B. (2) Computing P-value of best hit

All hits of each q against the Nt proteins in a spe-
cific phage genome T are examined by their pairwise
P-values, and the hit with the lowest pairwise P-value
(“best hit”) is retained. SpacePHARER computes the
P-value of the best hit pbh(q) using first order statistics,
i.e. the P-value of taking the minimum pairwise P-value
(p(q)), given that a total of Nt pairwise P-values were
examined:

pbh(q) = P (p (q) ≤ p) = 1− (1− p)Nt (2)

C. (3) Combining P-values using a modified
truncated product method

In this step, we aim to combine the evidence from sev-
eral best hits between a spacer set Q and a phage genome
T . We sort the pbh of the given set Q of Nq sequences
in ascending order and denote the i’th pbh as pi. When
combining independent P-values of individual hits, one
needs to take into account the number of individual hits
and the strength of each hit. The truncated product
method combines independent P-values into a score by
multiplying all pbh(q) smaller than a threshold p0 [14],

Scomb = − log

Nq∏
i=1

p
I(pi<p0)
i , (3)

where I(·) is the indicator function that returns 1 if the
argument is true and otherwise returns 0.

In SpacePHARER, we modified the truncated product
method for better performance. We take the product of
the smallest best-hit P-value p1 times the ratio between
pi and the threshold p0 for all further pi below the thresh-

2

old p0:

Scomb = − log

p1 ×
Nq∏
i=2

(
pi
p0

)I(pi<p0)
 (4)

For the threshold, we set p0 = 1/(Nq + 1), which cor-
responds to marginal significance, with an E-value of
Nq/(Nq + 1) just below 1. This ensures that the com-
bined score for null model-distributed P-values pi only
rarely gets boosted by a contribution from the second-
best pi.

D. (4) Determining true predictions

SpacePHARER predicts matches de novo, i.e. without
relying on any known phage-host relationships, by con-
trolling for estimated false discovery rate (FDR). The
FDR is the proportion of false predictions among all pre-
dictions:

FDR =
FP

FP + TP
(5)

We implemented an FDR estimation approach simi-
lar to that of the R package “fdrtool” [11]. In essence,
we estimate the FDR by a Grenander decreasing density
estimate of the empirical cumulative distribution func-
tion (ECDF). This non-parametric approach achieves its
robustness by ensuring monotonicity of the FDR.

SpacePHARER uses a null model dataset to estimate
the proportion of false predictions. The same search and
statistical computation procedures described in Steps 1,
2 and 3 of the algorithm are performed on a given null
model dataset, e.g. inverted phage ORFs or eukary-
otic viral ORFs. Inverting target ORFs as null model
dataset can be easily performed by specifying one pa-
rameter when preparing the input.

To compute an empirical P-value for each query spacer
set Q, we sort for each Q the combined scores Scomb of
matches in the original target dataset of phage proteomes
in ascending order. For each Scomb value in the target
dataset, we calculate an empirical P-value pemp by using
the fraction of Q−T matches with a combined score that
is below Scomb in the null model dataset. We denote the
number of Q− T matches below the cutoff as K and the
total number of matches using the null model dataset as
Nnull. The empirical P-value is then computed as

pemp(Scomb) =
K + 0.5

Nnull + 1
, (6)

where, to stabilize the estimate, we used half pseudo-
counts with P-values at 0 and 1. In the following, we
abbreviate these empirical P-values as p, or pQ for query
set Q.

If we knew the fraction π0 of false positives among all
Q − T matches, we could in principle estimate the false

discovery rate simply as

FDR(p) =
FPp

(TP + FP)p
≈ p π0

Femp(p)
, (7)

where p π0 is the fraction of false positives with empirical
P-value less than pi. Femp(p) is the empirical cumulative
distribution function of the pQ, in other words Femp(p)
is the number of query sets Q with best matches pQ ≤ p.

We can increase the robustness of the estimate by
using the fact that the true probability distribution of
P-values f(p) must be monotonously decreasing. This
will also ensure that the FDR decreases with increas-
ing p, which is often violated with the simple procedure
above. The Grenander estimate [11] is a simple, effi-
cient procedure to obtain a robust estimate F̂ (p) of F (p)
from Femp(p) that has monontonously decreasing den-
sity f̂(p) = dF̂ (p)/dp. We simply obtain the convex
hull of the area under the Femp(p) curve, that is, the
smallest function F̂ (p) with F̂ (p) ≥ Femp(p) that yields
a convex area under the curve. This results in a piece-
wise constant, monotonously decreasing density function
f̂(p) = dF̂ (p)/dp with steps at points pi with plast = 1.
We estimate the proportion of true null hypotheses π0 as
the average density using the last two steps,

π0 =
F̂ (plast)− F̂ (plast−2)

plast − plast−2
. (8)

Finally, we compute the estimated FDR corresponding
to each empirical P-value p (Fig.1A) as

FDR(p) =
FPp

(TP + FP)p
=

p π0

F̂ (p)
. (9)

By default, SpacePHARER has an FDR cutoff of 0.05,
and reports all matches in the test whose Scomb corre-
sponds to this FDR value or lower. Users can select other
suitable FDR cutoffs to retain more or fewer predictions.

E. (5) Scanning for possible PAMs

For some CRISPR-Cas systems, protospacer adjacent
motifs (PAMs) are required for the recognition of foreign
invader sequences. After reporting phage-host pairs and
their hits, SpacePHARER can perform a scan for possible
PAMs. For this, SpacePHARER by default extracts 10 nt
long fragments flanking the matched protospacer region
at the 5’ and 3’ side, in guide-centric orientation (PAM is
located on the strand that matched the spacer sequence).
Users can increase or decrease the length of the flank-
ing sequence. Both the 5’ and 3’ flanking sequences are
searched in a list of consensus PAM patterns from repre-
sentative CRISPR-Cas systems [5]. Since many CRISPR
detection tools cannot reliably predict the orientation of
the CRISPR array, the 5’ and 3’ flanking sequences on
the reverse strand are also searched and two additional
possible PAMs are reported. Users should refer to all pos-
sible PAMs without the accurate orientation information
of the array.

3

II. OPTIMIZING PARAMETERS FOR SHORT
FRAGMENTS SEARCH

Different substitution matrices are optimal for compar-
ing sequences that have diverged to different degrees. By
default, MMseqs2 search [10] uses the BLOSUM62 ma-
trix with standard gap penalties: gap open cost of 11 and
gap extend cost of 1 , which is more suited for long align-
ments and detecting weak protein similarities. Converse-
ly� for shorter sequences and higher protein similarity,
one should consider a “shallower” (higher bit score per
aligned column) matrix, and higher gap penalties to pre-
vent gaps [9]. Searching with VTML40 matrix [8] with
gap open cost of 16 and gap extend cost of 2 yielded
the highest sensitivity with 20% our test dataset at FDR
cutoff of 0.05 (Figure S2). We introduced a series of
VTML matrices in MMseqs2 to solve general problems
of short sequence search. After introducing the addi-
tional nucleotide alignment step, the search parameter
combination (VTML40 matrix, gap open cost of 16 and
gap extend cost of 2) remains the highest in sensitivity
(result not shown).

III. PREDICTING MATCHES USING BLASTN

We compared SpacePHARER’s performance with the
state-of-the-art method using BLASTN. To generate
a comparable result, we performed the search step
with BLASTN and the downstream FDR control with
SpacePHARER. We used BLASTN [1] to first query the
80% test spacer dataset against 7,824 phage genomes,
then against 7,824 inverted phage genomes or 11,304 eu-
karyotic viral genomes as a null model database. For
all searches we used the parameters: -max_target_seqs
10000000 -dust no -word_size 7 -outfmt ‘6 std qcovs’
and recorded the running time. Hits with at least 95%
sequence identity and 95% query(spacer) coverage (i.e.,
one or two mismatches were allowed) were retained.
We grouped the hits into matches (unique phage-host
genome pairs) and retained the minimum pairwise E-
value of the hits. We sorted the pairwise E-values of
hits in ascending order for both searches and counted the
matches at a given pairwise E-value cutoff. Therefore, we
could calculate an FDR in the same way SpacePHARER
does (described in section I.D) and compare the number
of true predictions produced by the two methods (Figure
1B).

At FDR = 0.05, SpacePHARER predicted 2 and 1.5×
more matches than BLASTN using 90% and 85% se-
quence identity and query coverage cutoffs (i.e allowing
up to 4 and 6 mismatches, respectively) (Figure S2).

IV. HOST TAXONOMIC RANK ANALYSIS

To assess the sensitivity of SpacePHARER at different
host taxonomic rank, we searched with CRISPR spac-

ers extracted from 1,066 bacterial genomes against 809
phage genomes with annotated host taxonomy [4], then
against inverted ORFs of the 809 phage genomes as null
model dataset. For each phage, SpacePHARER pre-
dicted the host lowest common ancestor (LCA) based
on an weighted LCA procedure [7].

We demanded a stricter FDR cutoff of 0.02 for matches
that should be taken into account for the host taxonomic
rank prediction. In order to limit the number of false
taxonomic prediction due to incomplete databases, the
LCA result was further corrected according to the aver-
age nucleotide sequence identity of the reported matches
[6]. We used the following cutoffs for maximal taxonomic
resolution: > 86% (species), > 84% (genus), > 82% (fam-
ily), > 80% (order), > 78% (class), > 76% (phylum), >
74% (kingdom). Lower values were assigned at the su-
perkingdom level. The taxonomic FDR cutoff and se-
quence identity cutoffs are user-definable parameters for
the weighted LCA procedure.

We searched with the above-mentioned spacer dataset
against phage genomes using BLASTN with parame-
ters: blastn-short -dust no -word_size 7 -outfmt ‘6 std
qcovs’ -evalue 1 -gapopen 10 -gapextend 2 -penalty -1
[4]. Hits with at least 95% sequence identity and 95%
query(spacer) coverage were retained (i.e., one or two
mismatches were allowed). For each phage, the bac-
terium with the lowest pairwise E-value was predicted
to be its host. Note that in Edwards et al., the au-
thors searched with the phage genomes against the spacer
dataset, and demanded 100% spacer coverage.

For ranks lower than phylum, we only included the
predictions with the taxonomic resolution of the respec-
tive rank or below. At the species level, SpacePHARER
predicted 142/237 hosts (60%), comparing with 112/232
hosts of BLASTN (48%). SpacePHARER predicted the
correct host for more phages at all taxonomic ranks, while
including most of the BLASTN predictions on the same
rank and sometimes even those agreeing only on a higher
rank(Figure 1C, Figure S3).

Incomplete reference databases remain an issue for
phage-host relationship predictions. To simulate sce-
narios where the database is very incomplete, we pro-
gressively exclude 25% and 50% of the host genomes
in the spacer dataset, and compared the performance
between BLASTN and SpacePHARER. SpacePHARER
predicted the correct host for more phages than BLASTN
at all taxonomic ranks when we searched with 50% and
75% of original host spacer dataset (Figure S4).

V. IDENTIFYING MIS-ANNOTATIONS IN
EUKARYOTIC VIRAL DATASET

Throughout this study we used the set of eukaryotic vi-
ral genomes as a null model dataset, assuming any match
between a prokaryotic genome and a eukaryotic virus is
false. Here, we used SpacePHARER’s second mode of
FDR control to detect viruses that were potentially mis-

4

annotated as eukaryotic viruses. To that end, we first
ran the SpacePHARER workflow with the full spacer
dataset against the eukaryotic viral genomes as the tar-
get database, and then, against inverted eukaryotic viral
ORFs as the null model database. We used the null set
to estimate the FDR as described in section I.D.

By applying the same FDR cutoff of 0.05, we identified
11 viruses out of the 11,304 that matched a prokaryotic
host (yielding a total of 12 matches). We observed three
groups within these matches. The first group consisted of
two matches between the smacovirus family (KP264966.1
and KY086299.1) and the archaeon CP005934.1 (Candi-
datus Methanomassiliicoccus intestinalis). Indeed this
family has been recently reported as mis-annotated as
“eukaryotic virus” by Díez-Villaseñor and Rodriguez-
Valera [3]. The second group consisted of two matches
between KT809302.1 (Haloarcula californiae icosahedral
virus 1) and family Halobacteriaceae (CP001687.1 and
LIST01000008.1). These matches are likely due to mis-
annotation of the virus as “eukaryotic virus”. The la-
beled host of this virus is Haloarcula californiae, which
is an archaeon that belongs to the same family as our
matches. The third group consisted of 8 members of the
genus Mimivirus that were matched to HE978663.1 (Ru-

minococcus sp. JC304) and JAAF01000022.1 (Fusobac-
terium necrophorum DAB). Table I shows the standard
output from SpacePHARER of this search. We suspect
the matches of the third group are due to spacer mis-
annotation and do not represent a real virus-host rela-
tionship. It was previously reported that Mimiviruses ac-
quire bacterial genes, even of the class Clostridia [12][13].
In the case of Ruminococcus sp. JC304, when we in-
spected the bacterial genomic region from which the
spacers were extracted, we found that the entire region is
likely to be a full bacterial ORF, rather than a CRISPR
array. Thus, we conclude that in these cases, the mis-
annotation is of the CRISPR array, rather than of the
virus.

VI. SOFTWARE VERSIONS

Name Version
SpacePHARER Git: 1d1f1b2

BLASTN 2.9.0+

TABLE II. Software versions used in this manuscript.

[1] Altschul, S.F. et al (1990). Basic local alignment search tool. J.
Mol. Biol., 215(3), 403–410.

[2] Brunson, J.C. (2020). ggalluvial: Layered grammar for alluvial
plots. J. Open Source Softw., 5(49), 2017.

[3] Díez-Villaseñor, C. and Rodriguez-Valera, F. (2019). CRISPR
analysis suggests that small circular single-stranded dna sma-
coviruses infect archaea instead of humans. Nat. Commun., 10(1),
294.

[4] Edwards, R.A. et al (2015). Computational approaches to predict
bacteriophage–host relationships. FEMS Microbiol. Rev., 40(2),
258–272.

[5] Leenay, R.T. and Beisel, C.L. (2017). Deciphering, communicat-
ing, and engineering the crispr pam. Journal of molecular biology,
429(2), 177–191.

[6] Levy Karin, E. et al (2020). Metaeuk—sensitive, high-throughput
gene discovery, and annotation for large-scale eukaryotic metage-
nomics. Microbiome, 8(1), 48.

[7] Mirdita, M. et al (2020). Fast and sensitive taxonomic assignment
to metagenomic contigs. bioRxiv. doi:10.1101/2020.11.27.401018.

[8] Müller, T. et al (2002). Estimating amino acid substitution mod-
els: A comparison of Dayhoff’s estimator, the resolvent approach
and a maximum likelihood method. Mol. Biol. Evol., 19(1), 8–13.

[9] Pearson, W.R. (2013). Selecting the Right Similarity‐Scoring Ma-
trix. Current Protocols in Bioinformatics, 43(1), 3.5.1–3.5.9.

[10] Steinegger, M. and Söding, J. (2017). MMseqs2 enables sensitive
protein sequence searching for the analysis of massive data sets.
Nat. Biotechnol., 35(11), 1026–1028.

[11] Strimmer, K. (2008). A unified approach to false discovery rate
estimation. BMC Bioinformatics, 9(1), 303.

[12] Yoshida, T. et al (2011). Mimivirus reveals mre11/rad50 fu-
sion proteins with a sporadic distribution in eukaryotes, bacteria,
viruses and plasmids. Virology journal, 8, 427–427.

[13] Yutin, N. et al (2014). Origin of giant viruses from smaller dna
viruses not from a fourth domain of cellular life. Virology, 466-
467, 38 – 52. Special issue: Giant Viruses.

[14] Zaykin, D. et al (2002). Truncated product method for combining
p-values. Genet. Epidemiol., 22(2), 170–185.

https://www.ncbi.nlm.nih.gov/nuccore/KP264966.1/
https://www.ncbi.nlm.nih.gov/nuccore/KY086299.1/
https://www.ncbi.nlm.nih.gov/nuccore/CP005934.1/
https://www.ncbi.nlm.nih.gov/nuccore/KT809302.1/
https://www.ncbi.nlm.nih.gov/nuccore/CP001687.1/
https://www.ncbi.nlm.nih.gov/nuccore/LIST01000008.1/
https://www.ncbi.nlm.nih.gov/nuccore/HE978663.1/
https://www.ncbi.nlm.nih.gov/nuccore/JAAF01000022.1/

5

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

0 20,000 40,000 60,000 80,000 100,000
#True Positives

Fa
ls

e
D

is
co

ve
ry

 R
at

e BLOSUM62 gapOpen=11 gapExtend=1

BLOSUM62 gapOpen=16 gapExtend=2

PAM30 gapOpen=11 gapExtend=1

VTML10 gapOpen=11 gapExtend=1

VTML20 gapOpen=11 gapExtend=1

VTML40 gapOpen=11 gapExtend=1

VTML40 gapOpen=16 gapExtend=2

VTML80 gapOpen=11 gapExtend=1

FIG. 1. Performance comparison of SpacePHARER with different search parameters (substitution matrix and gap penalties),
evaluated by the number of true positive (TP) predictions at different false discovery rates (FDRs). Predictions were made
by using a optimization spacer dataset (6,067 genomes, 20% of all prokaryotic genomes) against a database of 7,824 phage
genomes, with inverted phage ORFs as null model database. Searching with VTML40 matrix with gap open (16) and gap
extend (2), among various combinations of substitution matrix and gap penalties, yields most true positive matches than any
other parameter combination at FDR cutoff of 0.05.

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

0 50,000 100,000 150,000 200,000 250,000
#True Positives

Fa
ls

e
D

is
co

ve
ry

 R
at

e

BLASTN >85% seq.id. + >85% coverage

BLASTN >90% seq.id. + >90% coverage

BLASTN >95% seq.id. + >95% coverage

SpacePHARER

FIG. 2. Performance comparison of SpacePHARER with BLASTN using different sequence identity and query coverage
cutoffs (95%, 90% and 85%), evaluated by the number of true positive (TP) predictions at different false discovery rates
(FDRs). Predictions were made by using a spacer test dataset (24,322 genomes, 80% of all prokaryotic genomes) against a
database of 7,824 phage genomes, with inverted phage ORFs as null model database. (Note that the FDR control procedure
developed for SpacePHARER is not standard for BLASTN and has been applied here only for the purpose of FDR analysis.)

6

0

50

100

150

200

250

300

350

BLASTN SpacePHARER

F
re

qu
en

cy

Rank

Kingdom

Phylum

Class

Order

Family

Genus

Species

FIG. 3. Performance comparison of BLASTN (left) and SpacePHARER (right), evaluated by the number of host predictions
that agree with annotated host taxonomy at different taxonomic ranks. The grey alluvia [2] represent the host predictions that
were made by both SpacePHARER and BLASTN. Predictions were made using a validation spacer dataset (1,066 genomes)
against a validation database of 809 phage genomes with annotated host taxonomy. SpacePHARER prediction was further
corrected with inverted phage ORFs as null model database, and FDR cutoff of 0.02.

B
LA

S
T

N

S
pa

ce
P

H
A

R
E

R

10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75

Species Genus Family Order Class Phylum

0

100

200

300

400

% of original dataset

F
re

qu
en

cy

Incorrect
Correct

FIG. 4. Performance comparison of BLASTN (left) and SpacePHARER (right) as for Figure 1C, but on incomplete databases.
The host spacer dataset was progressively depleted from 100% of genomes (1,066) to 75% (800) and 50% (533). Performance
is evaluated by the number of host predictions that agree with annotated host taxonomy at different taxonomic ranks.

7

#CP005934.fas KP264966.1 7.588E+01 6
>CP005934.1_930280_937725_19_spacer_931524_35 KP264966.1 1.023E-04 35 3 546 578 CCT|- -|AGG
>CP005934.1_930280_937725_20_spacer_931590_37 KP264966.1 2.833E-04 1 36 2241 2206 CCT|- -|AGG
>CP005934.1_930280_937725_23_spacer_931792_37 KP264966.1 1.034E-09 1 36 1821 1786 CCA|- -|TGG
>CP005934.1_930280_937725_24_spacer_931860_37 KP264966.1 3.121E-07 3 35 606 638 CCA|TGG -|TGG
>CP005934.1_930280_937725_25_spacer_931928_36 KP264966.1 3.399E-13 1 36 2161 2126 CCG|- -|CGG
>CP005934.1_930280_937725_25_spacer_931928_36 KP264966.1 1.713E-11 2 34 2160 2128 CCG|- -|CGG
#CP005934.fas KY086299.1 5.640E+01 4
>CP005934.1_930280_937725_19_spacer_931524_35 KY086299.1 6.205E-04 35 3 1922 1890 CCT|- -|AGG
>CP005934.1_930280_937725_23_spacer_931792_37 KY086299.1 3.399E-13 2 37 641 676 CCA|- -|AGG
>CP005934.1_930280_937725_20_spacer_931590_37 KY086299.1 4.613E-05 1 36 220 255 CCT|- -|TGG
>CP005934.1_930280_937725_23_spacer_931792_37 KY086299.1 3.399E-13 1 36 640 675 CCA|- -|TGG
#LIST01000008.fas KT809302.1 1.295E+01 1
>LIST01000008.1_120573_126312_45_spacer_123484_36 KT809302.1 2.376E-06 36 1 22375 22340 -|- TTC|-
#CP001687.fas KT809302.1 2.639E+01 2
>CP001687.1_1415738_1419119_25_spacer_1417344_34 KT809302.1 1.137E-07 6 32 6826 6852 -|CAAGAA -|ACGGGATT
>CP001687.1_1415738_1419119_25_spacer_1417344_34 KT809302.1 1.137E-07 32 6 6852 6826 -|CAAGAA -|ACGGGATT
#HE978663.fas JN258408.1 1.054E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 JN258408.1 1.755E-28 2 70 806538 806606 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JN258408.1 5.707E-20 2 58 806715 806771 TTC|- -|-
#HE978663.fas JX885207.1 9.775E+01 2
>HE978663.1_7481_7851_2_spacer_7588_70 JX885207.1 1.755E-28 2 70 767273 767341 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JX885207.1 1.187E-16 2 58 767450 767506 TTC|- -|-
#HE978663.fas KF527229.1 8.186E+01 2
>HE978663.1_7481_7851_1_spacer_7510_49 KF527229.1 2.905E-18 2 49 935992 935945 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 KF527229.1 5.707E-20 2 58 935836 935780 TTC|- -|-
#HE978663.fas KU877344.1 9.775E+01 2
>HE978663.1_7481_7851_2_spacer_7588_70 KU877344.1 1.755E-28 2 70 780352 780420 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 KU877344.1 1.187E-16 2 58 780529 780585 TTC|- -|-
#HE978663.fas JX975216.1 1.015E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 JX975216.1 1.755E-28 2 70 781866 781934 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JX975216.1 2.682E-18 2 58 782043 782099 TTC|- -|-
#HE978663.fas MG779360.1 1.093E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 MG779360.1 3.447E-30 2 70 9786 9854 -|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 MG779360.1 5.707E-20 2 58 9963 10019 -|- -|-
#HE978663.fas JN885991.1 4.536E+01 2
>HE978663.1_7481_7851_3_spacer_7687_49 JN885991.1 2.061E-02 2 46 497977 498021 CCT|- TTG|AGG
>HE978663.1_7481_7851_4_spacer_7765_58 JN885991.1 5.707E-20 2 58 498055 498111 -|- -|-
#JAAF01000022.fas KY684109.1 1.295E+01 1
>JAAF01000022.1_41_3914_26_spacer_1726_36 KY684109.1 2.376E-06 1 36 185359 185324 TCT|TGAAGTTT TCA|-

TABLE I. Sample output format of SpacePHARER, demonstrated by matches when searching the full spacer dataset against
eukaryotic viral ORFs as a target database and inverted eukaryotic viral ORFs as null model database. Each match line starts
with “#”, followed by the prokaryote accession (the file from which spacers were extracted), viral genome accession, Scomb and
the number of hits in the match. Each hit line starts with “>”, followed by the spacer sequence header, viral genome accession,
pbh, spacer start, spacer end, viral genome start, viral genome end, and the possible PAM sequences on forward and reverse
strand (5’|3’). Additionally (not shown), the aligned sequences can be printed following each hit line.

